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Numerical simulation of antenna transmission and reception
for crosshole ground-penetrating radar

James D. Irving1 and Rosemary J. Knight1

ABSTRACT

Numerical models that account for realistic transmit-
ter and receiver antenna behavior are necessary to de-
velop waveform-based inversion methods for crosshole
ground-penetrating radar (GPR) data. A challenge in
developing such models is simulating the antennae in
a computationally efficient manner so that inversions
can be performed in a reasonable amount of time. We
present an approach to efficiently simulate crosshole
GPR transmission and reception in heterogeneous me-
dia. The core of our approach is a finite-difference time-
domain (FDTD) solution of Maxwell’s equations in 2D
cylindrical coordinates. First, we determine the behav-
ior of the current on a realistic GPR antenna in a
borehole through detailed FDTD modeling of the an-
tenna and its immediate surroundings. To model trans-
mission and reception, we then replicate this antenna
current behavior on a much-coarser grid using a su-
perposition of point-electric-dipole source and receiver
responses. Results obtained with our technique agree
with analytical results, with numerical modeling results
where the transmitter antenna and borehole are explic-
itly accounted for using a fine discretization, and with
crosshole GPR field data.

INTRODUCTION
Over the past decade, crosshole ground-penetrating radar

(GPR) has gained increasing popularity as a tool for high-
resolution imaging of the shallow subsurface. Applications
of this technique include delineation of ore bodies (Fulla-
gar et al., 2000); location of underground tunnels and voids
(Olhoeft, 1988; Moran and Greenfield, 1993); mapping frac-
tures in bedrock (Olsson et al., 1992; Day-Lewis et al.,
2003); and estimation of subsurface lithology and hydrogeo-
logic properties using field- or laboratory-derived petrophysi-
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cal relationships (Alumbaugh and Chang, 2002; Moysey and
Knight, 2004; Tronicke et al. 2004). Of interest in our re-
search is the use of tomographic images obtained from cross-
hole GPR data in the development of subsurface hydrogeo-
logic models.

Crosshole GPR tomography is identical in principle to
crosswell seismic tomography. A transmitter antenna, moved
to numerous locations in one borehole, radiates high-
frequency electromagnetic (EM) pulses that are recorded by
a receiver antenna, which is moved down a second bore-
hole. Most commonly, inversion of the resulting data is
accomplished by assuming that the propagating radar en-
ergy can be modeled by infinite-frequency rays that join the
centers of the antennae. Under this assumption, the first-
break traveltimes and amplitudes of the data can be used
to determine the distribution of subsurface EM-wave veloc-
ity and attenuation. The resulting ray-based tomographic im-
ages of the subsurface, however, are limited in resolution
to approximately the width of the first Fresnel zone asso-
ciated with the propagating pulse bandwidth (Williamson
and Worthington, 1993). In order to improve resolution,
we require modeling algorithms that account for more de-
tailed physical aspects of the crosshole GPR experiment,
such as wave propagation and antenna behavior. These algo-
rithms can be employed in waveform-based inversion strate-
gies that use all of the recorded data to determine sub-
surface properties (e.g., Pratt and Worthington, 1988; Zhou
et al., 1995).

Geophysicists have presented a number of approaches for
crosshole GPR modeling. None of these, however, allow for
the simulation of both antenna transmission and reception in
heterogeneous media. Sato and Thierbach (1991), for exam-
ple, analytically modeled a crosshole GPR experiment using
an expression for the current on an insulated dipole antenna
derived by King and Smith (1981). Although their approach
gives much insight into the effects of antenna and system pa-
rameters on recorded GPR wavelets, it requires a homoge-
neous medium between the boreholes and that the antennae
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be in the far field of one another. In addition, the expression
that the authors used for the antenna current is invalid for
the case of water-filled boreholes and is thus only suitable for
modeling in the vadose zone. Holliger and Bergmann (2002),
on the other hand, numerically modeled crosshole GPR using
a finite-difference time-domain (FDTD) approach in 2D cylin-
drical coordinates. In their formulation, only the transmitter
borehole was included in the model, and the antennae were
simulated as point vertical electric dipoles. Ernst et al. (2005)
further developed this algorithm to allow for detailed mod-
eling of a realistic, finite-length transmitter antenna. Ellefsen
and Wright (2005) employed a similar approach to examine
the radiation patterns of realistic borehole GPR antennae.
With these methods, much can be learned about the effects
of the borehole, subsurface heterogeneity, and antenna char-
acteristics on crosshole GPR radiation. However, only half of
the antenna problem can be addressed. Explicit modeling of
both the transmitter and receiver antennae and boreholes is
not possible using 2D cylindrical coordinates and would re-
quire a fully 3D approach. Considering the many FDTD sim-
ulations that are necessary to forward-model a crosshole GPR
data set and the numerous forward-model calculations that
are required for inversion, such an approach remains too com-
putationally intensive for most computers.

We present an algorithm to efficiently simulate crosshole
GPR transmission and reception in heterogeneous media.
This is accomplished using FDTD modeling in 2D cylindrical
coordinates through a superposition of point-electric-dipole
source and receiver responses. Our technique replicates the
behavior of the antenna current in the boreholes without the
need for explicit modeling of the antennae and boreholes. To
begin, we develop the basis for our approach using analyti-
cal expressions for transmission and reception between dipole
antennae located in a homogeneous medium. After demon-
strating the approach for two simple cases where ideal antenna
current distributions are assumed, we next discuss a means of
determining the current distribution on a realistic GPR an-
tenna located in an air- or water-filled borehole. Finally, we
compare results obtained using our technique with analytical
results, with numerical modeling results where the transmitter
antenna and borehole are explicitly included in the modeling
grid, and with crosshole GPR field data.

DEVELOPMENT OF THE
MODELING ALGORITHM

FDTD modeling in 2D cylindrical coordinates

The core of our modeling approach is the FDTD solution of
Maxwell’s equations in 2D cylindrical coordinates presented
by Holliger and Bergmann (2002). In this formulation, rota-
tional symmetry about the vertical z-axis is assumed so that
Maxwell’s equations can be separated into the transverse elec-
tric (TE) and transverse magnetic (TM) modes, which are
two sets of coupled partial-differential equations involving the
(Eφ,Hr, Hz) and (Er, Ez, Hφ) electric- and magnetic-field com-
ponents, respectively. For crosshole GPR modeling where the
antennae are oriented parallel to the z-axis, only the TM-
mode equations are required. These are solved numerically in
the time domain using a leap-frog, staggered-grid approach,
which involves offsetting the electric- and magnetic-field com-

ponents so that the finite-difference approximations of all par-
tial derivatives are centered in both space and time (Yee,
1966). Stepping forward in time is accomplished by alternately
updating the electric and magnetic fields. All updates are ex-
plicit. For approximate modeling of the radiation from an in-
finitesimal, vertical-electric dipole, a source current function is
added to the update for the Ez field component at the desired
spatial location. This amounts to adding the source function
to the z-component of the current density term in Maxwell’s
equations (Buechler et al., 1995).

We locate our field components in space identically to
Holliger and Bergmann (2002) to avoid singularity prob-
lems on the z-axis. We also use second-order-accurate finite-
difference approximations for all derivatives, which means
that 10 grid-points per minimum wavelength are needed to
control numerical dispersion. We choose the time step accord-
ing to the Courant numerical-stability criterion (Holliger and
Bergmann, 2002). Higher-order approximations can be used
for the spatial and/or temporal derivatives in our code, with
a moderate increase in code complexity, in order to decrease
the needed number of field points and thus reduce comput-
ing time (e.g., Bergmann et al., 1999). We implement perfectly
matched layer (PML) absorbing boundaries in cylindrical co-
ordinates to prevent reflections from the top, bottom, and
right-hand side of the simulation grid (Berenger, 1994; Teix-
eira and Chew, 1997).

With the assumed cylindrical symmetry, the transmitter an-
tenna and its borehole, which are centered on the z-axis, can
be explicitly and accurately represented with the above ap-
proach. However, as mentioned previously, explicit modeling
of both antennae and their boreholes to account for trans-
mission and reception is impossible using 2D cylindrical co-
ordinates and would require a fully 3D approach. Next, we
describe how this basic code can be adopted to model both
antennae transmission and reception using a superposition of
point source and receiver responses.

Simulation of antenna transmission and reception

Borehole GPR antennae are generally center-fed, linear
dipoles. We begin with the far-field analytical expressions for
radiation and reception between two such antennae aligned
parallel to the z-axis and located in a homogeneous medium.
A schematic of this situation is shown in Figure 1. Both an-
tennae have half-length l and are terminated by loads hav-
ing impedance Z0. The transmitter antenna is excited by the
generator voltage pulse Vg(t). Electromagnetic waves incident
upon the receiver antenna induce the voltage Vr in the receiver
load. In the far field, the frequency-domain expression for the
radiated electric field is (Sato and Thierbach, 1991)

Eθ (r, θ, ω) = −iξk
e−ikr

4πr
heff (ω) I (0, ω), (1)

where r and θ are defined in Figure 1; Eθ is the total electric
field in the direction of unit vector θ̂;ω is angular frequency;
ξ and k are the electromagnetic impedance and wavenum-
ber in the surrounding medium, respectively; I (0, ω) is the
frequency-domain antenna current at the feed point z = 0;
and heff (ω) is the θ component of the vector antenna effective
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height, given by (Sengupta and Tai, 1976)

heff (ω) = − sin θ

I (0, ω)

∫ l

−l

I (z, ω) eikz cos θdz. (2)

The parameters ξ and k are given in terms of the dielectric
permittivity ε, magnetic permeability µ, and electrical conduc-
tivity σ , of the surrounding medium as follows:

ξ =
√

µ

ε − iσ/ω
, (3)

k = ω
√

µ(ε − iσ/ω). (4)

Substituting equation 2 into equation 1, we obtain

Eθ (r, θ, ω) =
∫ l

−l

[
−iξk

e−ikr

4πr
I (z, ω) sin θ

]
eikz cos θdz.

(5)

The term in brackets in equation 5 is the far-field response
of an infinitesimal vertical electric dipole having current
I (z, ω) (e.g., Balanis, 1997). Thus, this equation shows that the
electric field radiated by the transmitter antenna could be ap-
proximated by a superposition of the responses of a number
of infinitesimal electric dipoles located along the length of the
antenna, each excited by some current function I (z, t). This
fact is used by Arcone (1995) to numerically examine the radi-
ation patterns of resistively loaded dipoles. The delay in phase
by the exponential term outside the brackets in equation 5 ac-
counts for the differences in path length between the far-field
measurement point and different points on the antenna.

Consider now the frequency-domain current at the trans-
mitter feed point, which is related to the generator voltage as
follows (Sato and Thierbach, 1991):

I (0, ω) = Vg(ω)
Z0 + Zin(ω)

, (6)

where Zin(ω) is the antenna input impedance. Defining

A(z, ω) = I (z, ω)
I (0, ω)

(
1

Z0 + Zin(ω)

)
, (7)

we have

I (z, ω) = A(z, ω) Vg(ω), (8)

or in the time domain

I (z, t) = A(z, t) ∗ Vg(t). (9)

Here, we see that the current at each point on the transmitter
antenna can be expressed as the convolution of the generator
voltage pulse with the function A(z, t). We call A(z, t) the an-
tenna current impulse response because it represents the cur-
rent that results on the antenna in response to a delta-voltage
excitation.

As an example, we calculated A(z, t) using the inverse
Fourier transform of equation 7 for the case of a 2-m-long,
bare-wire dipole antenna attached to a 50 � load and embed-
ded in a lossless medium having dielectric constant κ = 9 (Fig-
ure 2). For the antenna current and input impedance, we used
the familiar standing-wave expressions (e.g., Smith, 2001)

I (z, ω) = I (0, ω)
sin k(l − |z|)

sin kl
(10)

and

Zin = −iZc cot kl, (11)

which are obtained by approximating the antenna as a short-
circuited transmission line having characteristic impedance
Zc. For the wavenumber on the antenna, we used the low-loss
expression

k = ω
√

κ

c
(12)

where c is the velocity of light in free space. We set Zc = 150 �

to yield a feed-point reflection coefficient of 0.5. Figure 2
shows that, in response to an input voltage pulse, a current
pulse is created on each arm of the transmitter antenna. These
two pulses travel back and forth between the antenna feed and
end points. For this simple example, we assumed that the ve-
locity of the current pulses on the antenna was the same as
that of the external medium. In addition, the pulses were as-
sumed to travel without any distortion and become reduced in
amplitude only upon reflection at the feed point. In the next
section, we evaluate the suitability of assuming this type of
simple current behavior for the crosshole GPR case.

At the receiver antenna, we are interested in an expression
for Vr , the voltage induced in the receiver load by the radi-
ated electric field. In the far field, this is given in the frequency
domain by (Sato and Thierbach, 1991)

Vr(r, θ, ω) = −Eθ (r, θ, ω)heff (ω)
(

Z0

Z0 + Zin(ω)

)
.

(13)

Substituting equation 2 for the effective height of the antenna
into the above expression and using our definition for A(z, ω),
we obtain:

Vr(r, θ, ω) =
∫ l

−l

[Eθ (r, θ, ω) sin θ eikz cos θ ] A(z, ω)Z0 dz,

(14)

where integration is now along the length of the receiver an-
tenna. The term in brackets in equation 14 is simply the z-
component of the electric field at location z on the antenna.

Figure 1. Basic schematic of a crosshole GPR experiment. For
simplicity, the boreholes and antenna cross-sectional details
have not been included. (Sato and Thierbach 1991).
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Defining this quantity as Ez(z, ω), we obtain in the time do-
main

Vr(r, θ, t) =
∫ l

−l

[Ez(z, t) ∗ A(z, t)]Z0 dz. (15)

Equation 15 shows that, similar to the transmission case, the
voltage induced in the receiver load also can be approximated
as a superposition of the responses of infinitesimal elements
along the receiver antenna. Specifically, we can obtain Vr(t)
by summing the convolution of Ez(z, t) and A(z, t) along the
antenna and multiplying this result by the load impedance Z0.
Intuitively, this can be understood as follows: At each point
on the receiver antenna, the Ez component of the incident EM
pulse from the transmitter antenna induces current pulses that
travel in both directions away from that point. As in the trans-
mission case, these pulses reverberate along the antenna arm.
Just as A(z, t) describes how an impulsive voltage at the trans-
mitter antenna feed is related to the current experienced at
each point along the antenna, it also describes how an impul-
sive voltage excitation at each point on the receiver antenna is
related to the current experienced at the center. Thus, we con-
volve Ez(z, t) with A(z, t) and sum along the antenna to obtain
the total current in the receiver load. The multiplication by Z0

transforms this current into voltage.
Based on the above results, we can numerically simulate

crosshole GPR transmission and reception using the previ-
ously described FDTD code in 2D cylindrical coordinates. To
model transmission, we first obtain the antenna current distri-
bution by convolving the excitation voltage pulse with A(z, t).
To the update for the Ez field at each point in the simulation
grid corresponding to a location on the transmitter antenna,
we then add the appropriate current function, which simulates
infinitesimal vertical electric dipole radiation from that point.
Together, the responses of the infinitesimal dipoles emulate
the radiation of the finite-length antenna. To model reception,
the Ez field at all nodes collocated with the receiver antenna is
stored during the finite-difference simulation. After the time
stepping is complete, the recorded data are convolved with the

Figure 2. Normalized antenna current impulse response,
A(z, t), for a 2-m-long, bare-wire, standing-wave dipole an-
tenna embedded in a lossless κ = 9 medium. Results were
obtained using the inverse Fourier transform of equation 7.

appropriate values of A(z, t) and then summed and multiplied
by Z0 to obtain the receiver load voltage.

In simulating transmission and reception in this manner, we
avoid explicit, detailed modeling of the antennae and their
boreholes, and instead account for these features through the
antenna current behavior. As a result, we can perform model-
ing very efficiently on a relatively coarse grid. In addition, al-
though we used far-field expressions to derive this approach,
we are not restricted to the far field, and the approach is thus
perfectly valid for the small borehole separations that are typ-
ically encountered in crosshole GPR.

Examples for standing-wave and
Wu-King dipole antennae

As basic examples of our modeling approach, Figures 3 and
4 show the radiated Ez field and receiver load voltage deter-
mined for two cases that represent the end members of com-
mercial borehole GPR antennae. In Figure 3, we used the
antenna current impulse response function from Figure 2 to
model radiation and reception between 2-m-long, standing-
wave dipole antennae embedded in a lossless, homogeneous
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Figure 3. (a) Radiated Ez field and (b) received waveform
determined for 2-m-long, standing-wave dipole antennae in a
lossless κ = 9 medium.
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medium having κ = 9. The transmitter antenna was placed at
a depth of 10 m, and the horizontal antenna separation was
4 m. For the excitation voltage, we used a Gaussian pulse,
given by

Vg(t) = exp

[
−

(
t − t0

τ

)2
]
, (16)

where the characteristic time τ was set equal to 1 ns, and t0 was
chosen such that Vg(0) is the first point in the Gaussian where
the amplitude reaches 0.1% of its maximum value. Notice that
the radiated Ez field for the standing-wave dipole consists of a
series of positive and negative pulses, each of which represents
radiation from either the antenna feed or end points in accor-
dance with time-domain antenna theory (Smith, 1997; Smith,
2001). That is, although we have superimposed the responses
of infinitesimal dipoles along the entire length of the antenna
to model the radiated wavefield, these responses cancel ev-
erywhere on the dipole except at the feed and end points,
where charge acceleration and deceleration take place. We
purposely chose a short excitation pulse and long antennae
for this example to demonstrate this effect. If the antennae
were shortened, the current pulse velocity along the anten-
nae were increased, or the excitation pulse were lengthened,
then the discrete arrivals seen in Figure 3 would merge. This
typically occurs in crosshole radar data (Sato and Thierbach,
1991). There is also a significant difference between the Ez and
received voltage waveforms in Figure 3. Whereas the Ez wave-
form consists of distinct pulses in time, the received waveform
appears more like an integrated pulse sequence. This is also
in accordance with time-domain antenna theory (Shlivinski
et al., 1997; Smith, 2004), and illustrates the importance of
properly accounting for reception, in addition to transmission,
when modeling crosshole GPR data.

In Figure 4, we used the same modeling parameters and ex-
perimental geometry as Figure 3, but altered A(z, t) to sim-
ulate transmission and reception between resistively loaded,
Wu-King dipole antennae (Wu and King, 1964). Specifically,
the amplitude of the original standing-wave dipole impulse re-
sponse shown in Figure 2 was linearly tapered to zero at the
ends of the antenna so that (Smith, 1997)

Awk(z, t) =
{

As(z, t) {1 − |z|/l} if t ≤ l/vant ,

0 otherwise,
(17)

where vant is the velocity of the current pulses on the antenna,
Awk(z, t) is the Wu-King dipole impulse response, and As(z, t)
is the standing-wave dipole impulse response. Whereas a
standing-wave antenna sustains pulses of current that travel
back and forth along the antenna arms, a Wu-King dipole
is loaded with resistance in such a manner as to be reflec-
tionless. For this reason, the pulses of current on a Wu-King
dipole travel only from the feed point to the ends of the an-
tenna before they decay to zero amplitude. Figure 4 shows
that, in contrast to the standing-wave case, the radiated and
received waveforms for the Wu-King dipole are very compact.
Because there are no reflections on the antenna, radiation
comes largely as an initial pulse from the feed point (Smith,
1997). The results in Figure 4 are in accordance with those of
Sengupta and Liu (1974), who analytically investigated the re-
sponse of Wu-King dipoles to Gaussian pulse excitation.

In practice, commercial borehole GPR antennae lie some-
where between the undamped, standing-wave dipoles of Fig-
ure 3 and the Wu-King dipoles of Figure 4. That is, these
antennae tend to be lightly resistively loaded to achieve a com-
promise between power radiated into the ground and pulse
width, which ideally should be short. Indeed, crosshole GPR
waveforms that we have recorded in the field tend to contain
more peaks and troughs than the waveforms displayed in Fig-
ure 4b but significantly less of these than the waveforms shown
in Figure 3b.

Behavior of the antenna current for crosshole GPR

To model antenna transmission and reception using a su-
perposition of point source and receiver responses, we require
prior knowledge of the antenna current behavior, contained
in A(z, t). For the examples in Figures 3 and 4, ideal A(z, t)
functions were assumed. In using these functions, the velocity
of the current pulses on the antennae was assumed to be the
same as the EM-wave velocity of the surrounding medium,
and the pulses were assumed to undergo no change in shape
as they traveled along the antenna arms. For the simple case
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Figure 4. (a) Radiated Ez field and (b) received waveform de-
termined for 2-m-long, resistively loaded (Wu-King) dipole
antennae in a lossless, κ = 9 medium.
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of a thin, bare-wire antenna embedded in a homogeneous
medium, this behavior may be a reasonable approximation to
reality (Balanis, 1997). However, in the crosshole radar case,
the antennae are insulated and located in air- or water-filled
boreholes. As a result, such simple A(z, t) functions are gen-
erally invalid.

In the situation where the materials between the antenna
wire and the external medium (i.e., the antenna insulation and
borehole-filling material for the crosshole GPR case) have
significantly lower dielectric permittivities than the external
medium, a realistic current distribution on an insulated an-
tenna may be obtained analytically (King and Smith, 1981;
King et al., 1983). Under these conditions, the antenna can be
treated as a short-circuited transmission line and characterized
by equations 10 and 11, but with a characteristic impedance
that is complex and frequency-dependent and a wave num-
ber different from that of the surrounding medium. Sato and
Thierbach (1991) use these results in their analytical formula-
tion of crosshole GPR transmission and reception. However,

External 
medium 

(κmed, σmed)

Antenna wire 
(dwire, σwire)

Antenna 
insulation 
(dins, κins)

Borehole 
(dbh, κbh, σbh)

Feed gap 
(1 mm)

Figure 5. Modeling domain used to determine the behavior of
the current on a realistic borehole GPR antenna.

Figure 6. Normalized transmitter antenna current for an in-
sulated, 2-m-long, dipole antenna located in a 5-cm-diameter,
air-filled borehole and surrounded by earth having κmed = 9
and σmed = 1 mS/m. Results were determined using a finely
discretized FDTD simulation with the outer boundary set 0.5
m away from the antenna axis.

as mentioned previously, this approach is valid only for mod-
eling in the vadose zone, as in the saturated zone, the material
present in the borehole (water) has a significantly higher di-
electric permittivity than the surrounding earth.

To determine realistic current behavior for crosshole GPR
antennae in both air- and water-filled boreholes, without any
assumptions or approximations, we use a detailed FDTD
modeling approach in 2D cylindrical coordinates. In a similar
manner to Ernst et al. (2005) and Ellefsen and Wright (2005),
we model explicitly the transmitter antenna and borehole, us-
ing a fine spatial discretization. We then simulate transmission
on the antenna and examine the current distribution. To re-
duce computing time, we limit the extent of our model to a
small region around the borehole. Figure 5 shows the model-
ing domain that we consider for this approach. The antenna
wire, with diameter dwire and electrical conductivity σwire, con-
tains a small, 1-mm feed gap at the center. The wire is sur-
rounded by lossless insulation having external diameter dins

and dielectric constant κins . The borehole, with diameter dbh,
is characterized by either κbh = 1 and σbh = 0 mS/m (air-filled)
or κbh = 80 and σbh = 1 mS/m (water-filled). The surrounding
medium has electrical properties κmed and σmed . For all mate-
rials, we assume that the magnetic permeability equals its free
space value, µ0. To feed the antenna and represent the cor-
rect impedance contrast at the input terminals, we attach a
1D transmission line that is terminated at the far end with an
absorbing boundary condition (Maloney et al., 1994; Lampe
et al., 2003). The voltage excitation function is then introduced
into the line through a one-way injector. To obtain the current
on the antenna from the FDTD modeling results, we apply the
integral formulation of Ampere’s Law to the Hφ field nodes
located just outside the antenna wire.

Figure 6 shows the antenna current that we obtained us-
ing this approach for a 2-m-long, insulated dipole located in
a 5-cm-diameter, air-filled borehole and excited by a Gaus-
sian pulse with τ = 1 ns. This borehole diameter is typical
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Figure 7. Comparison of received waveforms computed using
our approach (black) and determined analytically using the
method of Sato and Thierbach (1991) (red).
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of the PVC-cased piezometer wells that we commonly use for
our crosshole GPR work. The surrounding earth had κmed = 9
and σmed = 1 mS/m. The antenna wire was modeled as a cop-
per cylinder with dwire = 5 mm and σwire = 5 × 107 S/m.
For the insulation, we used dins = 30 mm and κins = 4.
These specifications approximately model the cross-section
of our commercial borehole GPR antennae. The character-
istic impedance of the 1D feeding transmission line was set
to 50 �. Figure 6 shows, as described previously, that a pulse
of current travels back and forth on each arm of the an-
tenna in response to the excitation voltage pulse. In con-
trast to the simple cases considered earlier, however, these
pulses undergo significant broadening as they propagate be-
cause of the presence of the antenna insulation and bore-
hole. This shows that we cannot ignore dispersion that oc-
curs along the antennae when modeling crosshole GPR. For
the case of a water-filled borehole, the dispersion was found
to be even more significant than we show here. Also impor-
tant in Figure 6 is the fact that the velocity of the current
pulses on the antenna is 0.14 m/ns, which
is significantly greater than the EM-
wave velocity of the surrounding earth
(approximately 0.1 m/ns). Clearly, the
antenna insulation and borehole have a
marked effect on the antenna current
distribution, and thus, on transmission
and reception.

To model crosshole GPR using our
approach, the actual current on the
antennae is not required, but rather,
the antenna current impulse response
A(z, t). However, FDTD modeling us-
ing a true impulse voltage excitation
to obtain A(z, t) would require an ex-
tremely fine spatial discretization be-
cause of the high frequency compo-
nents involved and the fact that 10 grid
points per minimum wavelength are re-
quired to control numerical dispersion.
To obtain a reasonable approximation
to A(z, t) for our purposes, we com-
pute the antenna current as described
above using a Gaussian excitation pulse
whose frequency spectrum is essentially
white over the bandwidth of the trans-
mitter excitation pulse of interest. We
have found that setting τ = 0.1 ns in
equation 16 yields a good approxima-
tion to A(z, t) for crosshole GPR mod-
eling. In addition, we have found that
A(z, t) is relatively insensitive to moder-
ate fluctuations in the electrical proper-
ties of the earth surrounding the anten-
nae; that is, the antenna current behav-
ior is much more dependent upon the
properties of the insulation and material
filling the borehole. As a result, we often
need to compute A(z, t) only once, using
an average value for the earth’s electri-
cal properties, to adequately model an
entire crosshole GPR survey.

COMPARISON WITH ANALYTICAL,
NUMERICAL, AND FIELD RESULTS

To validate our modeling approach, we now compare re-
sults obtained using our code with analytical results, numeri-
cal modeling results where the transmitter antenna and bore-
hole have been explicitly discretized, and crosshole GPR field
data. For all cases, 0.8-m-long dipole antennae were consid-
ered, which is the length of the frequently employed 100-MHz
center frequency antennae in our crosshole GPR system. The
transmitter antenna for all cases was located at 10 m depth,
and the antenna wire was assumed to be a 5-mm-diameter
copper cylinder. A Gaussian excitation pulse with τ = 2 ns
(e.g., Sato and Thierbach, 1991) was used for all of the simu-
lations. We believe this is a close approximation to the volt-
age pulse delivered by our commercial system transmitter.
We normalized each trace in the gathers presented below by
the maximum value in order to allow an easier comparison
of the individual waveforms, whose amplitudes decrease sig-
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Figure 8. Comparison of radiated Ez field computed using our approach (black) and
using a finely discretized FDTD code with the transmitter antenna and borehole ex-
plicitly modeled (red). (a) vadose zone, 5-cm-diameter borehole; and (b) vadose zone,
10-cm-diameter borehole; (c) saturated zone, 5-cm-diameter borehole; and (d) satu-
rated zone, 10-cm-diameter borehole.
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nificantly at high propagation angles. In each case, the abso-
lute amplitudes of the data being compared were in excellent
agreement.

Figure 7 compares the receiver load waveforms obtained
using our code with the analytical results of Sato and Thier-
bach (Sato and Thierbach, 1991) for the case where the an-
tennae were situated in 5-cm-diameter, air-filled boreholes
and surrounded by a homogeneous medium having κmed = 9
and σmed = 1 mS/m. For this example, the borehole separa-
tion was 5 m. The modeled antennae were not insulated (i.e.,
dins = dwire) because the formulation presented by Sato and
Thierbach considers only one material between the antenna
wire and the surrounding earth. Their approach could be ex-
tended to include both the antenna insulation and borehole-
filling material using the results of King et al. (1983). As seen
in Figure 7, there is excellent agreement between our results
and the analytical solution.

In Figure 8, we compare the radiated Ez field determined
using our approach, with that obtained by explicitly modeling
the transmitter antenna and its borehole using a very fine spa-
tial discretization in a similar manner to Ernst et al. (2005) and
Ellefsen and Wright (2005). We examined four cases which
represent 5-cm- and 10-cm-diameter boreholes in vadose- and
saturated-zone environments. In all of these cases, the insu-
lated antenna profile used for Figure 6 was employed. The Ez

field was recorded at points along a vertical line 3 m away from
the transmitter borehole. In the vadose-zone examples (Fig-
ures 8a and 8b), the borehole was air-filled and surrounded by
a homogeneous medium having κmed = 9 and σmed = 1 mS/m.
Here, we see that our results are nearly identical to those de-
termined through detailed FDTD modeling. In the saturated
zone examples (Figures 8c and 8d), the borehole was filled
with water, and the surrounding medium had κmed = 25 and
σmed = 5 mS/m. Again, the results obtained using the two ap-
proaches are in excellent agreement. Clearly, in accounting for
the transmitter antenna and borehole by replicating the an-
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Figure 9. Comparison of received waveforms modeled using
our approach (black) and recorded in the field in an unsatu-
rated sand-and-gravel aquifer deposit (red).

tenna current behavior on a significantly coarser grid, we are
able to accurately obtain the radiated wavefield.

Recent work shows that, in addition to affecting the cur-
rent distribution on an antenna, a water-filled borehole may
distort antenna radiation through guided-wave effects (Hol-
liger and Bergmann, 2002; Tronicke et al., 2004; Tronicke and
Holliger, 2004). Indeed, there is slightly less agreement be-
tween our code and the detailed modeling results for the 10-
cm-diameter, water-filled borehole case shown in Figure 8d,
which we believe is related to this phenomenon. Although the
differences between our code and the finely discretized results
in Figure 8d are minor, it is important to emphasize that our
methodology can only account for guided-wave effects to the
extent that they affect the antenna current distribution. For
some combinations of antenna excitation pulse and borehole
diameter in water-filled boreholes, it is possible that guided-
wave effects that cannot be modeled with our approach may
be more significant than we show here.

As a final example, Figure 9 compares results obtained
using our code with crosshole GPR field data collected be-
tween 5-cm-diameter, air-filled piezometer wells located in a
relatively homogeneous, unsaturated, glaciofluvial sand-and-
gravel deposit near Abbotsford, British Columbia, Canada.
The boreholes were 6 m apart. Again, we modeled the an-
tennae using the insulated antenna profile from Figure 6. In
addition, to obtain the best match with the field data, we in-
cluded constant resistive loading along the antennae. This was
accomplished by increasing the resistivity of the antenna wire
cells in the detailed FDTD simulation that was used to ob-
tain A(z, t). We used an average value of κmed = 6, which was
obtained from picked first-arrival times in the crosshole data.
We estimated the conductivity of the sand and gravel to be
1 mS/m. Figure 9 shows our modeling results and the field data
to be in good agreement. The received waveforms are very
similar, except for a slightly broader received pulse in the field
data, especially at high angles (i.e., longer travel paths), which
we suspect is related to intrinsic dispersion in the sand and
gravel. We have not accounted for frequency-dependent ma-
terial properties in our FDTD code, but including dispersion
into the algorithm would be straightforward (e.g., Bergmann
et al., 1998).

CONCLUSIONS

Through a relatively simple modification of the FDTD al-
gorithm of Holliger and Bergmann (2002), we can simulate
both antenna transmission and reception for crosshole GPR
in heterogeneous media. A significant advantage of our ap-
proach is that modeling can be performed very efficiently on
a relatively coarse, 2D grid. In addition, our method allows us
to simulate the current behavior on realistic borehole GPR
antennae very accurately because we obtain A(z, t) from a
detailed FDTD simulation where the antenna and bore-
hole features are included explicitly. Our next step is to use
this modeling approach to develop a full-waveform inversion
strategy for crosshole GPR data. Although it has been shown
recently that guided-wave effects may significantly affect an-
tenna radiation in water-filled boreholes, our method was able
to model radiation in both 5-cm- and 10-cm-diameters water-
filled boreholes very accurately. However, some combinations
of borehole diameter and transmitter excitation pulse may
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produce guided-wave effects that cannot be completely ac-
counted for through the antenna current distribution. If these
effects are determined to be important, they could at least be
partly accounted for with our code by explicitly modeling the
transmitter borehole. Finally, it is likely that our formulation
could also be used, with a few modifications, to model trans-
mission and reception in a vertical radar profile (VRP) config-
uration. This is a topic of future research.

ACKNOWLEDGMENTS

This research was supported by funding to R. Knight
from the National Science Foundation, Grant Number EAR-
0229896-002. J. Irving was also supported during this work
through a Departmental Chair’s Fellowship at Stanford Uni-
versity. We thank reviewers Steve Arcone, Klaus Holliger,
and associate editor Joe Dellinger for suggestions that im-
proved this manuscript.

REFERENCES

Alumbaugh, D., and P. Y. Chang, 2002, Estimating moisture contents
in the vadose zone using cross-borehole ground-penetrating radar:
A study of accuracy and repeatability: Water Resources Research,
38, 1309, doi:10.1029/2001WR000754.

Arcone, S. A., 1995, Numerical studies of the radiation patterns of
resistively loaded dipoles: Journal of Applied Geophysics, 33, 39–
52.

Balanis, C. A., 1997, Antenna theory: Analysis and design: Harper &
Row.

Berenger, J. P., 1994, A perfectly matched layer for the absorption
of electromagnetic waves: Journal of Computational Physics, 114,
185–200.

Bergmann, T., J. O. Blanch, J. O. A. Robertsson, and K. Hol-
liger, 1999, A simplified Lax-Wendroff correction for staggered-
grid FDTD modeling of electromagnetic wave propagation in
frequency-dependent media: Geophysics, 64, 1369–1377.

Bergmann, T., J. O. A. Robertsson, and K. Holliger, 1998, Finite-
difference modeling of electromagnetic wave propagation in disper-
sive and attenuating media: Geophysics, 63, 856–867.

Buechler, D. N., D. H. Roper, C. H. Durney, and D. A. Chris-
tensen, 1995, Modeling sources in the FDTD formulation and
their use in quantifying source and boundary condition errors:
IEEE Transactions on Microwave Theory and Techniques, 43, 810–
814.

Day-Lewis, F. D., J. W. Lane, J. M. Harris, and S. M. Gorelick, 2003,
Time-lapse imaging of saline tracer transport in fractured rock us-
ing difference radar attenuation tomography: Water Resources Re-
search, 39, 1290, doi:10.1029/2002WR001722.

Ellefsen, K. J., and D. L. Wright, 2005, Radiation pattern of a bore-
hole radar antenna: Geophysics, 70, K1–K11.

Ernst, J. R., K. Holliger, and H. Maurer, 2005, Realistic FDTD mod-
elling of borehole georadar antenna radiation: Methodology and
application: Near Surface Geophysics, SEG.

Fullagar, P. K., D. W. Livelybrooks, P. Zhang, and A. J. Calvert,
2000, Radio tomography and borehole radar delineation of the Mc-
Connell nickel sulphide deposit, Sudbury, Ontario, Canada: Geo-
physics, 65, 1920–1930.

Holliger, K., and T. Bergmann, 2002, Numerical modeling of borehole
georadar data: Geophysics, 67, 1249–1257.

King, R. W. P., and G. S. Smith, 1981, Antennas in matter: Fundamen-
tals, theory, and applications: MIT Press.

King, R. W. P., B. S. Trembly, and J. W. Strohbehn, 1983, The elec-
tromagnetic field of an insulated antenna in a conducting or dielec-
tric medium: IEEE Transactions on Microwave Theory and Tech-
niques, MTT-31, 574–583.

Lampe, B., K. Holliger, and A. G. Green, 2003, A finite-difference
time-domain simulation tool for ground-penetrating radar anten-
nas: Geophysics, 68, 971–987.

Maloney, J. G., K. L. Shlager, and G. S. Smith, 1994, A simple FDTD
model for transient excitation of antennas by transmission lines:
IEEE Transactions on Antennas and Propagation, 42, 289–292.

Moran, M. L., and R. J. Greenfield, 1993, Radar signature of a 2.5-D
tunnel: Geophysics, 58, 1573–1587.

Moysey, S., and R. J. Knight, 2004, Modeling the field-scale re-
lationship between dielectric constant and water content in het-
erogeneous systems: Water Resources Research, 40, W03510,
doi:10.1029/2003WR002589.

Olhoeft, G. R., 1988, Interpretation of hole-to-hole radar measure-
ments: 3rd Symposium on Tunnel Detection, Proceedings, 616–629.

Olsson, O., L. Falk, O. Forslund, L. Lundmark, and E. Sandberg, 1992,
Borehole radar applied to the characterization of hydraulically con-
ductive fracture zones in crystalline rock: Geophysical Prospecting,
40, 104–116.

Pratt, R. G., and M. H. Worthington, 1988, The application of diffrac-
tion tomography to cross-hole seismic data: Geophysics, 53, 1284–
1294.

Sato, M., and R. Thierbach, 1991, Analysis of a borehole radar in
cross-hole mode: IEEE Transactions on Geoscience and Remote
Sensing, 29, 899–904.

Sengupta, D. L., and Y. Liu, 1974, Analytical investigation of wave-
forms radiated by a resistively loaded linear antenna excited by a
Gaussian pulse: Radio Science, 6, 621–630.

Sengupta, D. L., and C. T. Tai, 1976, Radiation and reception of tran-
sients by linear antennas, in L. B. Felsen, ed., Transient electromag-
netic fields: Springer.

Shlivinski, A., E. Heyman, and R. Kastner, 1997, Antenna character-
ization in the time domain: IEEE Transactions on Antennas and
Propagation, 45, 1140–1149.

Smith, G. S., 1997, An introduction to classical electromagnetic radia-
tion: Cambridge University Press.

———, 2001, Teaching antenna radiation from a time-domain per-
spective: Americal Journal of Physics, 69, 288–300.

———, 2004, A direct derivation of a single-antenna reciprocity re-
lation for the time domain: IEEE Transactions on Antennas and
Propagation, 52, 1568–1577.

Teixeira, F. L., and W. C. Chew, 1997, Systematic derivation of
anisotropic PML absorbing media in cylindrical and spherical co-
ordinates: IEEE Microwave and Guided Wave Letters, 7, 371–373.

Tronicke, J., and K. Holliger, 2004, Effects of gas- and water-filled
boreholes on the amplitudes of crosshole georadar data as inferred
from experimental evidence: Geophysics, 69, 1255–1260.

Tronicke, J., K. Holliger, W. Barrash, and M. D. Knoll, 2004, Mul-
tivariate analysis of cross-hole georadar velocity and attenuation
tomograms for aquifer zonation: Water Resources Research, 40,
W01519, doi:10.1029/2003WR002031.

Williamson, P. R., and M. H. Worthington, 1993, Resolution limits in
ray tomography due to wave behaviour: Geophysics, 58, 727–735.

Wu, T. T., and R. W. P. King, 1964, The cylindrical antenna with non-
reflecting resistive loading: IEEE Transactions on Antennas and
Propagation, AP-12, 369–373.

Yee, K. S., 1966, Numerical solution of initial boundary value prob-
lems involving Maxwell’s equations in isotropic media: IEEE
Transactions on Antennas and Propagation, 14, 302–307.

Zhou, C., W. Cai, Y. Luo, G. Schuster, and S. Hassanzadeh, 1995,
Acoustic wave-equation traveltime and waveform inversion of
crosshole seismic data: Geophysics, 60, 765–773.


